EE602PC: POWER ELECTRONICS

B.Tech. III Year II Sem.	L	Т	Р	С
	4	1	0	4

Prerequisite: Electronic circuits

Course Objectives:

- To Design/develop suitable power converter for efficient control or conversion of power in drive applications
- To Design / develop suitable power converter for efficient transmission and utilization of power in power system applications.

Course Outcomes: After completion of this course the student is able to

- Choose the appropriate converter for various applications
- Design the power converters suitable for particular applications
- Develop the novel control methodologies for better performance.

UNIT – I

Power Semi Conductor Devices and Commutation Circuits: Thyristors - Silicon Controlled Rectifiers (SCR's) - BJT - Power MOSFET - Power IGBT and their characteristics and other thyristors - Basic theory of operation of SCR - Static characteristics – Turn-on and Turn-off methods- Dynamic characteristics of SCR - Turn on and Turn off times -Salient points.

Two transistor analogy of SCR - R, RC, UJT firing circuits - Series and parallel connections of SCRs - Snubber circuit details – Specifications and Ratings of SCR, BJT, IGBT - Numerical problems – Line Commutation and Forced Commutation circuits.

UNIT – II

Single Phase Half Wave Controlled Converters: Phase control technique - Single phase Line commutated converters - Half wave controlled converters with Resistive, RL load and RLE load - Derivation of average load voltage and current -Active and Reactive power inputs to the converters without and with Freewheeling Diode - Numerical problems

Single Phase Fully Controlled Converters: Fully controlled converters, Midpoint and Bridge connections with Resistive, RL loads and RLE load - Derivation of average load voltage and current – Line commutated inverters, semi-converters, active and Reactive power inputs to the converters, Effect of source inductance – Expressions of load voltage and current - Numerical problems.

Three Phase Line Commutated Converters: Three phase converters - Three pulse and six pulse converters and bridge connections with R, RL load voltage and current with R and RL load and RLE loads - Semi Converters, Effect of Source inductance–Dual converters Waveforms - Numerical Problems

UNIT – III

AC Voltage Controllers: AC voltage controllers – Single phase two SCR's in anti parallel with R and RL loads, modes of operation of Triac – Triac with R and RL loads – Derivation of RMS load voltage, current and power factor- wave forms, Numerical problems- Single phase and three phase cycloconverters (principle of operation only).

UNIT – IV

Choppers: Choppers – Time ratio control and Current limit control strategies – Step down choppers- Derivation of load voltage and currents with R, RL and RLE loads- Step up Chopper – load voltage expression.

Morgan's chopper – Jones chopper - Oscillation choppers (Principle of operation only) - waveforms — AC Chopper – Problems

UNIT – V

Inverters: Inverters – Single phase inverter – Basic series inverter, parallel Capacitor inverter, bridge inverter – Waveforms,. Simple bridge inverters, Voltage control techniques for inverters- Pulse width modulation techniques – Numerical problems.

TEXT BOOKS:

- 1. M. D. Singh & K. B. Kanchandhani, "Power Electronics", Tata Mc Graw Hill Publishing Company, 1998.
- "M. H. Rashid", "Power Electronics : Circuits, Devices and Applications", Prentice Hall of India, 2nd edition, 1998
- 3. "V. R. Murthy", "Power Electronics", Oxford University Press, 1st Edition 2005.

REFERENCE BOOKS:

- 1. Vedam Subramanyam, "Power Electronics", New Age International (P) Limited, Publishers, 2nd Edition 2008.
- 2. Philip T. Krein, "Elements of Power Electronics", Oxford University Press, 1997.
- 3. M. S. Jamil Asghar, "Power Electronics", PHI Private Limited, 2004.
- 4. P. C. Sen, "Power Electronics", Tata Mc Graw-Hill Publishing, 2001.
- 5. John G. Kassakian, Martin, F. Schlect, Geroge C. Verghese, "Principles of Power Electronics", Pearson Education, 1st Edition 2010.